Mathworksheetsgo.com recommends www.meta-calculator.com, a free online graphing calculator (graphs implicit equations, does advanced statics like T-tests and much more)
МАЕТA
© www.MathWorksheetsGo.com All Rights Reserved
Commercial Use Prohibited

Difficult Compound Interest Problems

Formulas:

$\boldsymbol{A}=\boldsymbol{P}\left(\mathbf{1}+\frac{\boldsymbol{r}}{\boldsymbol{n}}\right)^{\boldsymbol{n t}}$	$\boldsymbol{A}=\boldsymbol{P} \boldsymbol{e}^{\boldsymbol{r t}}$
A= ending dollar amount	$A=$ ending dollar amount
$P=$ principal, beginning dollar amount	$P=$ principal, be ginning dollar amount
$r=$ interest rate in decimal form	$e=$ constant ≈ 2.71
$n=$ number of times the interest is compounded annually	$r=$ interest rate in decimal form
(annually $=1$, semiannually $=2$, quarterly $=4$, monthly $=12)$	$t=$ years
$t=$ years	

Example 1:

$\begin{aligned} & A=\$ 1595.43 \\ & P=\$ 1250.00 \\ & r=? ? ? \\ & n=\text { continuous } \\ & t=4 \end{aligned}$	$\begin{aligned} & \boldsymbol{A = P \boldsymbol { P } ^ { r t }} \\ & 1595.43=1250.00 e^{r \cdot 4} \\ & \frac{1595.43}{1250.00}=\frac{1250.00 e^{r \cdot 4}}{1250.00}, \text { divide both sides by } 1250.00 \\ & 1.276344=e^{r \cdot 4} \end{aligned}$ $\ln 1.276344=\ln e^{r \cdot 4}, \quad$ take the natural \log of both sides $\ln 1.276344=r \cdot 4 \cdot(\ln e)$, the exponent can be brought down, and \ln e equals 1 $0.2440=r \cdot 4$ $\frac{0.2440}{4}=\frac{r \cdot 4}{4-}$, divide both sides by 4 $0.06099=r \approx 6.1 \%$

Example 2:

If at the end of six years your savings account has a balance of $\$ 1236.34$, and your original deposit was $\$ 1,000.00$, then at what interest rate is your account compounded semi-annually?

$A=1236.34$ $P=1000.00$ $r=? ? ?$ $n=2$ $t=6$ $\boldsymbol{A}=\boldsymbol{P}\left(\mathbf{1}+\frac{\boldsymbol{r}}{\boldsymbol{n}}\right)^{\boldsymbol{n t}}$ $1236.34=1000\left(1+\frac{r}{2}\right)^{2 \cdot 6}$ $\frac{1236.34}{1000}=\frac{1000\left(1+\frac{r}{2}\right)^{12}}{1000}$, $1.23634=\left(1+\frac{r}{2}\right)^{12}$, from	divide both sides by 1000 this point there are two methods for solving
Method A: $\log (1.23634)=\log \left(1+\frac{r}{2}\right)^{12}$ take the \log of both sides $0.0921=12 \cdot \log \left(1+\frac{r}{2}\right)$ bring exponent down $\frac{0.0921}{12}=\frac{12 \cdot \log \left(1+\frac{r}{2}\right)}{12}$ divide both sides by 12 $0.007675=\log _{10}\left(1+\frac{r}{2}\right)$ $10^{0.007675}=1+\frac{r}{2}$ rewrite equation exponentially $1.0178=1+\frac{r}{2}$ $1.0178-1=1+\frac{r}{2}-1$ subtract 1 from both sides $0.0178=\frac{r}{2}$ $2 \cdot 0.0178=\frac{r}{2} \cdot 2$ multiply both sides by 2 $0.0357=r \approx 3.6 \%$	Method B: $(1.23634)^{\frac{1}{12}}=\left(\left(1+\frac{r}{2}\right)^{12}\right)^{\frac{1}{12}}$ raise both sides to the $\frac{1}{12}$ power $1.0178=1+\frac{r}{2}$ $1.0178-1=1+\frac{r}{2}-1$ subtract 1 from both sides $0.0178=\frac{r}{2}$ $2 \cdot 0.0178=\frac{r}{2} \cdot 2$ multiply both sides by 2 $0.0357=r \approx 3.6 \%$

1. $A=\$ 590.29, P=\$ 500.00, r=? ? ?, n=$ continuous,$t=2$
2. $A=\$ 590.29, P=\$ 500.00, r=$? ? ? , $n=$ continuous, $t=20$ What is the connection between the answers in number one and number two?
3. $A=\$ 34,826.26, P=\$ 18,000.00, r=? ? ?, n=$ continuous, $t=12$
4. $A=\$ 143.24, P=\$ 111.00, r=5.1 \%, n=$ continuous,$t=? ?$?
5. $A=\$ 578.28, P=\$ 515.20, r=? ? ?, n=$ continuous, $t=3.5$
6. $A=\$ 459.08, P=\$ 300.00, r=? ? ?, n=2, t=10$
7. $A=\$ 1,948.84, P=\$ 1,000.00, r=? ? ?, n=1, t=10$
8. $A=\$ 5,024.03, P=\$ 4,728.18, r=? ? ?, n=12, t=6$ months $(0.5$ years $)$
9. $A=\$ 5,602.39, P=\$ 5,200.00, r=5.0 \%, n=4, t=? ?$?
10. $A=\$ 1,255,407.48, P=\$ 1,000,000.00, r=? ? ?, n=4, t=12$
11. A continuously compounded savings account had an initial deposit of $\$ 10,000.00$ and 10 years later has a balance of $\$ 13,125.87$. At what interest rate was the savings account?
12. $\$ 250.00$ is left in a savings account at 4.0% and the interest is compounded continuously. If the balance is now $\$ 330.78$, then how many years was the money been in the account?
13. Hearing about the PlayStation 4 release 3.5 years ago, a teenager put his savings of $\$ 500.00$ into a continuously compounded savings account. He now has $\$ 619.65$. At what fixed rate was the interest?
14. Cailynn, an eight year old girl has saved up a total of $\$ 400.00$ from birthday checks from her grandparents over the years. Her parents put the money into a savings account for her. For the next two years it is earning interest compounded monthly. When she turns 10 years old she has a balance of $\$ 507.89$. What is her account's interest rate? How much did the account balance increase?
15. Thomas, Cailynn's older brother, is 16 years old. He has saved $\$ 800.00$ and his parents put the money in an account exactly the same as Cailynn's. At the end of the two years he has $\$ 1,015.79$. What is his account's interest rate? How much did the account balance increase?
16. Explain the relationship between the accounts in problems 14 and 15 .
17. James has won a relatively small lottery amount of $\$ 100,000.00$. He has two offers from his bank to choose from to deposit his money. The first offer is for three years, compounded monthly at 6.25%. The second offer is for 15 years, compounded monthly at 1.25%. Calculate the ending amount for both offers. Notice that the interest rate is divided by five here, and the years are multiplied by five. Compare with problems 1 and 2 . Why do the offers have different ending balances?
18. Your older sister is about to make you an aunt/uncle. As a gift you deposit $\$ 100.00$ into an account that compounds interest quarterly. In 50 years, the account has a balance of $\$ 347.68$. What is the interest rate?
19. Before solving this problem, do you expect a bigger account balance or smaller account balance than problem 18? As a gift you decide deposit $\$ 100.00$ into an account that compounds interest continuously at 2.5%. What is the account balance after 50 years? Were you correct? Explain the comparison.
20. Maybe you have heard that time is money. If you deposit $\$ 10,000.00$ into an account that compounds interest quarterly for 40 years, you will have a balance of $\$ 211,307.65$. What is the interest rate? If you have the chance to put the same deposit in a continuously compounded account at the same interest rate, how much quicker will you get to a balance of $\$ 211,307.65$?

Answer Key:

1. 8.3%
2. 0.83%, years are multiplied by 10 , rate is divided by 10
3. 5.5%
4. 5
5. 3.3%
6. 4.3%
7. 6.9%
8. 12.2%
9. 1.5
10. 1.9%
11. 2.72%
12. 7
13. 6.13%
14. 12.0\%, $\$ 107.89$
15. 12.0\%, \$215.79
16. Double the money deposited will earn double the interest if all other factors are the same
17. $\$ 120,564.35, \$ 120,611.25$, monthly compounding interest accumulates slower than continuous
18. 2.5%
19. Bigger due to the more frequent compounding, $\$ 349.03$
20. 7.7%, It will take 39.6 years, so 0.4 years quicker

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

