TEST NAME: Math 3 Inverses Practice Test Fall 2018
TEST ID: 2575580
GRADE: 09-Ninth Grade - 12-Twelfth Grade
SUBJECT: Mathematics
TEST CATEGORY: School Assessment

10/02/18, Math 3 Inverses Practice Test Fall 2018
Student:
Class:
Date:

1. The table of values represents all points in the function $g(x)$.

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
-6	3
-3	9
0	-3
3	-1
5	6

What is the value of $g^{-1}(3)$?
A -1
B. -6
C. 9
D. 0
2. The graph of the function $f(x)$ is shown on the coordinate plane.

Which value is closest to $f^{-1}(-5)$?
A -7
B. -5
C. -4
D. -2
3. The domain of the function $f(x)=(x+2)^{2}+3$ is restricted to $(-\infty,-2$ to produce an invertible function $g(x)=(x+2)^{2}+3$ What is the domain of g^{-1} ?
A. $(-\infty, \infty)$
B. $(-\infty,-2]$
C. $[-2,-\infty)$
D. $[3, \infty)$
4. What is the inverse function of $f(x)=\frac{4}{x-3} ?(x \neq 3)$
A. $\quad f^{-1}(x)=\frac{4}{x}+3 \quad(x \neq 0,3)$
B. $f^{-1}(x)=\frac{4}{x}-3 \quad(x \neq 0,3)$
C. $f^{-1}(x)=\frac{x-3}{4} \quad(x \neq 3)$
D. $f^{-1}(x)=\frac{7}{x} \quad(x \neq 0,3)$
5. What is the inverse of $f(x)=5 x+6$?

A $f^{-1}(x)=-5 x-6$
B. $f^{-1}(x)=\frac{x-6}{5}$
C. $f^{-1}(x)=\frac{x-5}{6}$
D. $f^{-1}(x)=6 x+5$
6. Which equation represents the inverse, $f^{-1}(x)$, of the function $f(x)=3 x+1$?

A $f^{-1}(x)=\frac{1}{3} x+1$
B. $f^{-1}(x)=\frac{1}{3} x-1$
C. $f^{-1}(x)=\frac{1}{3} x-\frac{1}{3}$
D. $f^{-1}(x)=\frac{1}{3} x+\frac{1}{3}$
7. What is the inverse function of $y=\sqrt{x-\frac{1}{2}}, x \geq \frac{1}{2}$?
A. $y=x^{2}+\frac{1}{2}, x \geq 0$
B. $y=x^{2}-\frac{1}{2}, x \geq 0$
C. $y=x^{2}+\frac{1}{4}, x \geq 0$
D. $y=x^{2}-\frac{1}{4}, x \geq 0$
8. What is the inverse function of $y=4 x^{2}-16$?
A. $y=\sqrt{\frac{x}{4}+4} ; x \geq-16$
B. $y=\frac{\sqrt{x}+4}{2} ; x \geq 0$
C. $y=\sqrt{x+4} ; x \geq-4$
D. $y=\frac{\sqrt{x+16}}{4} ; x \geq-16$
9. The point $(5,-8)$ lies on the graph of the function, $f(x)$. Which of the following points lies on the graph of the function's inverse, $f^{-1}(x)$?

A $(-8,5)$
B. $\left(\frac{1}{5},-\frac{1}{8}\right)$
C. $(-5,8)$
D. $\left(-\frac{1}{5}, \frac{1}{8}\right)$
10. The graph of the function $f(x)$ is shown on the coordinate plane.

Which value is closest to $f^{-1}(-3)$?
A -6
B. -5
C. 4
D. 8
11. Function \boldsymbol{g} is graphed below.

For which restrictions of the domain is the inverse of function g not a function?

A $-\infty \leq x \leq 0$
B. $0 \leq x \leq 3$
C. $1 \leq x \leq 5$
D. $3 \leq x \leq \infty$
12. The inverse of $f(x)=2 x^{3}-6 x^{2}-36 x+1$ is not a function. Which of the restrictions on the domain of $f(x)$ ensures that $f^{-1}(x)^{\text {is }}$ a function?

I $-\infty<x<-2$
II $3 \leq x<\infty$
III- $2 \leq x<3$
A I only
B. I and II only
C. III only
D. I, II, and III
13. The inverse of the function $f(x)=x^{2}+6 x+5$ is not a function. Which restriction of $f(x)$ ensures that the inverse of $f(x)$ is a function?

A restrict the domain of $f(x)$ to $-5 \leq x \leq-1$
B. restrict the range of $f(x)$ to $-4 \leq f(x) \leq 0$
C. restrict the domain of $f(x)$ to $-3 \leq x \leq-1$
D. restrict the range of $f(x)$ to $0 \leq f(x) \leq 5$
14. What is the inverse function of $y=\sqrt{x+3}$ given $_{x} \geq-3$?

A $y=-\sqrt{x+3} ; x \geq-3$
B. $y=\sqrt{x-3} ; x \geq 3$
C. $y=x^{2}+9 ; x \geq 0$
D. $y=x^{2}-3 ; x \geq 0$
15. A function is defined by the equation $y=3 x-8$.Which equation represents the inverse of this function?

A $y=\frac{1}{3 x-8}$
B. $y=8-3 x$
C. $y=\frac{3}{x}+\frac{8}{3}$
D. $y=\frac{x+8}{3}$

