TEST NAME: Math 3 Inverses Practice Test Fall 2018 TEST ID: 2575580 GRADE: 09 - Ninth Grade - 12 - Twelfth Grade SUBJECT: Mathematics TEST CATEGORY: School Assessment

10/02/18, Math 3 Inverses Practice Test Fall 2018

Student:	
Class:	
Date:	

1. The table of values represents all points in the functiong(x).

x	g(x)
-6	3
-3	9
0	-3
3	-1
5	6

What is the value of $g^{-1}(3)$?

A -1

в. -6

- C. 9
- D. **()**

^{2.} The graph of the function f(x) is shown on the coordinate plane.

- D. -2
- ^{3.} The domain of the function $f(x) = (x + 2)^2 + 3$ is restricted to $(-\infty, -2]$ to produce an invertible function $g(x) = (x + 2)^2 + 3$. What is the domain of g^{-1} ?
 - A (-00,00)
 - B. (-∞, -2]
 - C. [-2, -∞)
 - D. [3,∞)

- ^{4.} What is the inverse function of $f(x) = \frac{4}{x-3}$? $(x \neq 3)$
 - A $f^{-1}(x) = \frac{4}{x} + 3$ $(x \neq 0, 3)$ B. $f^{-1}(x) = \frac{4}{x} - 3$ $(x \neq 0, 3)$ C. $f^{-1}(x) = \frac{x-3}{4}$ $(x \neq 3)$ D. $f^{-1}(x) = \frac{7}{x}$ $(x \neq 0, 3)$
- 5. What is the inverse of f(x) = 5x + 6?
 - A $f^{-1}(x) = -5x 6$ B. $f^{-1}(x) = \frac{x - 6}{5}$ C. $f^{-1}(x) = \frac{x - 5}{6}$
 - D. $f^{-1}(x) = 6x + 5$
- 6. Which equation represents the inverse, $f^{-1}(x)$ of the function f(x) = 3x + 1?
 - A $f^{-1}(x) = \frac{1}{3}x + 1$
 - B. $f^{-1}(x) = \frac{1}{3}x 1$
 - C. $f^{-1}(x) = \frac{1}{3}x \frac{1}{3}$
 - D. $f^{-1}(x) = \frac{1}{3}x + \frac{1}{3}$

- ^{7.} What is the inverse function of $y = \sqrt{x \frac{1}{2}}, x \ge \frac{1}{2}$?
 - A $y = x^{2} + \frac{1}{2}, x \ge 0$ B. $y = x^{2} - \frac{1}{2}, x \ge 0$ C. $y = x^{2} + \frac{1}{4}, x \ge 0$ D. $y = x^{2} - \frac{1}{4}, x \ge 0$
- ^{8.} What is the inverse function of $y = 4x^2 16$?
 - A $y = \sqrt{\frac{x}{4} + 4}; x \ge -16$ B. $y = \frac{\sqrt{x} + 4}{2}; x \ge 0$ C. $y = \sqrt{x + 4}; x \ge -4$ D. $y = \frac{\sqrt{x + 16}}{4}; x \ge -16$
- ^{9.} The point (5, -8) lies on the graph of the function, f(x). Which of the following points lies on the graph of the function's inverse, $f^{-1}(x)$?
 - A (-8,5)
 - $\mathsf{B.} \quad \left(\frac{1}{5}, -\frac{1}{8}\right)$
 - C. (-5,8)
 - D. $\left(-\frac{1}{5},\frac{1}{8}\right)$

^{10.} The graph of the function f(x) is shown on the coordinate plane.

- A. <u>-6</u>
- B. <u>-5</u>
- C. 4
- D. 8

^{11.} Function *g* is graphed below.

For which restrictions of the domain is the inverse of function *g* not a function?

- A $-\infty \le x \le 0$
- B. $0 \le x \le 3$
- C. $1 \le x \le 5$
- D. $3 \le x \le \infty$
- ^{12.} The inverse of $f(x) = 2x^3 6x^2 36x + 1$ is not a function. Which of the restrictions on the domain of f(x) ensures that $f^{-1}(x)$ is a function?
 - $\begin{array}{c} -\infty < x < -2 \\ \parallel 3 \le x < \infty \\ \parallel -2 \le x < 3 \end{array}$
 - A. I only
 - B. I and II only
 - C. Ill only
 - D. I, II, and III

- ^{13.} The inverse of the function $f(x) = x^2 + 6x + 5$ is not a function. Which restriction of f(x) ensures that the inverse of f(x) is a function?
 - A restrict the domain of f(x) to $-5 \le x \le -1$
 - B. restrict the range of f(x) to $-4 \le f(x) \le 0$
 - C. restrict the domain of f(x) to $-3 \le x \le -1$
 - D. restrict the range of f(x) to $0 \le f(x) \le 5$
- ^{14.} What is the inverse function of $y = \sqrt{x+3}$ given $x \ge -3$?
 - A $y = -\sqrt{x+3}; x \ge -3$
 - B. $y = \sqrt{x-3}; x \ge 3$
 - C. $y = x^2 + 9; x \ge 0$
 - D. $y = x^2 3; x \ge 0$
- ^{15.} A function is defined by the equation y = 3x 8. Which equation represents the inverse of this function?
 - A. $y = \frac{1}{3x 8}$
 - $B. \quad y = 8 3x$
 - $C. \quad y = \frac{3}{x} + \frac{8}{3}$
 - D. $y = \frac{x+8}{3}$

