SWBAT write the equation of a circle in standard form. Standard: NC.M3.G.GPE. 1

Agenda:
Warmup \#39
Notes
Practice

## General form equation for circle

 $a x^{2}+b y^{2}+c x+d y+e=0$, where $a=b$
## Standard form equation for circle

$(x-h)^{2}+(y-k)^{2}=r^{2} \longrightarrow$ note: Radius is squared here
center - (h, k)
radius - r

Write the equation of the circle with center at $(4,3)$ and the radius is 5 .

$$
\begin{aligned}
& \text { center: }(h, k) \Rightarrow(4,3) \\
& h=4 \\
& k=3 \\
& r=5 \\
&(x-h)^{2}+(y-k)^{2}=r^{2} \\
&(x-4)^{2}+(y-3)^{2}=5^{2} \\
&(x-4)^{2}+(y-3)^{2}=25
\end{aligned}
$$

* Notice *
how the centers * coordinates are $*$ in the equations * * *

Write the equation of the circle with the given center and radius.

1. center $(-1,7) r=1 \quad(x+1)^{2}+(y-7)^{2}=1$
2. center $(-4,-2) r=\sqrt{7}(x+4)^{2}+(y+2)^{2}=7$
3. Write the standard form of the circle.
4. State the center and radius.
5. Graph the circle.

$$
\begin{gathered}
x^{2}+y^{2}+4 x+8 y+16=0 \quad \frac{4}{2}=2^{2}=4 \\
x^{2}+4 x+4+y^{2}+8 y+16=-16+4+16 \frac{8}{2}=(4)^{2}=16 \\
(x+2)^{2}+\quad(y+4)^{2}=4 \\
(x+2)^{2}+(y+4)^{2}=4 \quad \text { center }=(-2,-4) \\
\text { radius }=2
\end{gathered}
$$

1. Write the standard form of the circle.
2. State the center and radius.
3. Graph the circle.

$$
\begin{aligned}
& x^{2}+y^{2}+4 x+8 y+16=0 \\
& \text { Now }(x+2)^{2}+(y+4)^{2}=4 \\
& c=(-2,-4) \\
& \begin{array}{c}
\text { plot the } \\
\text { center }
\end{array} \\
& \text { (2) move the } \\
& \text { leith of the } \\
& \text { radius (2) } \\
& \text { racilus (2) from the center } \\
& \text { (3) Draw the greatest circle of your Life!! }
\end{aligned}
$$

1. Write the standard form of the circle. 2. State the center and radius. 3. Graph the circle.

$$
\begin{gathered}
x^{2}+y^{2}-11 x+6 y-18=7 \\
x^{2}-11 x+30.25 y^{2}+6 y+9=25+3025+9 \\
(x-5.5)^{2}+(y+3)^{2}=64.25 \\
\text { center: }(5.5,-3) \\
\text { radius: } 8.02
\end{gathered}
$$

$$
\begin{aligned}
& C(5.5,-3) \\
& r=8.02
\end{aligned}
$$

(1) plot center
(2) move the radius $\in \uparrow \rightarrow$
connect the circle


Give the equation of the circle whose center is (5, -3) and goes through $(2,5)$.

$$
\left\{(x-5)^{2}+(y+3)^{2}=73\right\}
$$

to find $r$, we need to find clistance from center to circle

$$
d=\sqrt{(x-x)^{2}+(y-y)^{2}}
$$

AKA Pythagorean Theorem

$$
\begin{gathered}
d=\sqrt{(5-2)^{2}+(-3-5)^{2}} \\
\sqrt{3^{2}+(-8)^{2}} \\
\sqrt{9+64} \\
\sqrt{73}
\end{gathered}
$$

radius $=\sqrt{73}$

## Problem-Based Task 7.1: Nurturing an Investment

Anna's landscaping company has a contract to improve and maintain a municipal park. Anna made a scale drawing of the park on a coordinate system, using meters as the unit of distance. She has already installed two permanent sprinkler outlets. Sprinkler 1 waters inside the region whose boundary has the equation $x^{2}+y^{2}-20 x-20 y+136=0$. Sprinkler 2 waters inside the region whose boundary has the equation $x^{2}+y^{2}-50 x-24 y+669=0$. Anna bought an expensive tree and she wants to plant it at the point $(17,8)$, where she thinks it will be watered by both sprinklers. Will the tree be watered by both sprinklers at that point? Draw a sketch that illustrates your answer.

## Problem-Based Task 7.1: Nurturing an Investment

Anna's landscaping company has a contract to improve and maintain a municipal park. Anna made a scale drawing of the park on a coordinate system, using meters as the unit of distance. She has already installed two permanent sprinkler outlets. Sprinkler 1 waters inside the region whose boundary has the equation $x^{2}+y^{2}-20 x-20 y+136=0$. Sprinkler 2 waters inside the region whose boundary has the equation $x^{2}+y^{2}-50 x-24 y+669=0$. Anna bought an expensive tree and she wants to plant it at the point $(17,8)$, where she thinks it will be watered by both sprinklers. Will the tree be watered by both sprinklers at that point? Draw a sketch that illustrates your answer.


