\qquad
\qquad
\qquad
Unit 3 - Polynomials Study Guide
Objective: Division

Synthetic division can be used when the divisor is in the form ($\mathrm{x}-\mathrm{k}$). Example: Use synthetic division for the following $\left(2 x^{3}-7 x^{2}-8 x+16\right) \div(x-4)$ First, write down the coefficients in descending order, and k of the divisor in the form $x-k$: $\begin{aligned} & k \rightarrow 4 \end{aligned}$ When \qquad is a \qquad divide your \qquad one more time	Find the quotient and remainder of: 1. $\left(x^{3}+4 x^{2}-3 x+2\right) \div(x+3)$ 2. $\left(2 x^{4}-4 x^{3}-x^{2}-3 x+8\right) \div(x-1)$ 3. $\left(5 x^{3}+3 x^{2}-3 x-6\right) \div(2 x+1)$
If there is a ___ term you need to put in a	Find the quotient and remainder of: 4. $\left(x^{3}+6 x+1\right) \div(x-3)$ 5. $\left(2 x^{4}+8-4 x\right) \div(x+2)$
$\|$Remainder Theorem: If a polynomial $p(x)$ is divided by the binomial $x-a$, the remainder obtained is $p(a)$. So, if $p(x)=x^{3}-4 x^{2}-7 x+10$ was divided by at our example, if, the remainder can be determined by finding $p(2)$. $p(x)=x^{3}-4 x^{2}-7 x+10$ $p(2)=(2)^{3}-4(2)^{2}-7(2)+10$ $=8-16-14+10 \quad=-12$ Or you can \qquad in \qquad	6. Determine the remainder when $3 x^{6}-3$ is divided by x-2
Find k first then do division with other root	Suppose $f(x)=x^{3}-x^{2}+4 x+k$. The remainder of the division of $f(x)$ by $(x-1)$ is 12 . What is the remainder of the division of $f(x)$ $\text { by }(x+3)$
Just follow the pattern to find each	$x^{3}+x^{2}+7 x+30+\frac{119}{x-4}$ If the answer is in form $B(x)+\frac{r(x)}{p(x)}$ $p(x)=$ \qquad $B(x)=$ \qquad $r(x)=$ \qquad

Be able to find the missing dimension. Remember that it usually doesn't matter which expression goes where, unless the problem specifically states it.	The volume of a box is given by the polynomial $\mathrm{V}(\mathrm{x})=-\mathrm{x}^{3}+28 x^{2}-71 \mathrm{x}-100$. The length is represented by the expression ($x-4)$. Steps: 1. Divide 2. Factor the quadratic.
Be able to find the highest possible volume for the box. (find the vertex in the realistic domain) height and width of the box.	14. Find the max volume of the box.

Finding all roots of a function.

To find all roots: 1. Graph the equation to determine the integer roots. 2. Use synthetic division to find the quadratic equation. 3. Solve the quadratic equation by either factoring or using the quadratic formula	17. Find all of the roots for $f(x)=x^{3}-2 x^{2}-2 x+12$. 18. $x^{4}-2 x^{2}+3 x-2$
When is the second function greater than the first $\begin{aligned} & y=.2(x-3)^{2}+3 x+8 \\ & y=2^{.5 x-6} \end{aligned}$	What is a polynomial with the roots $\frac{4}{3}, 2, \frac{-1}{6}$?
What is a polynomial with roots 2 and $8 i ?$	

