Unit 7 – Modeling with Geometry Study Guide

Centers of Triangles		
Review	Example	Practice
 Centroid: Intersection of Medians Orthocenter: Intersection of Altitudes Incenter: Intersection of Angle bisectors Circumcenter: Intersection of perpendicular bisectors 	This is the centroid because the segments are medians. C is the centroi If AC = 12, find $_B$ AC is twice the length of CF, so CF =12/2 = 6 Therefore, the length of AF is 12 + 6 = 18.	Identify the segments and the point of concurrency. 1. Segment: Point:
Parallelograms		
 Parallelograms: Opposite sides are parallel and congruent. Opposite angles are congruent. Consecutive angels are supplementary. Diagonals bisect each other. 	The following shapes are parallelograms. Solve for the variables. $ \begin{array}{r} (3x + 5)^{\circ} & 70^{\circ} \\ 2x^{\circ} & (x + 3y)^{\circ} \\ 2x = 70 & 3x + 5 = x + 3y \\ x = 35 & 3(35) + 5 = (35) + 3y \\ 110 = 35 + 3y \\ 75 = 3y \\ 25 = y \\ \end{array} $ $3x = 12 & x + y = 5y \\ x = 4 & (4) + y = 5y \\ 4 = 4y \\ 1 = y \end{array} $	1. The following shapes are parallelograms. Solve for the variables. $(4a - 4)^{2}$ $(2a + 30)^{\circ}$ $(2a + 30)^{$

Volume			
Know your area and	Class notes		1. Two spheres M and N have volumes of 250
volume formulas			cubic cm and 750 cubic cm respectively. Find
-Prism			the ratio of their radii.
V = Bh			
			2 Two motal cubos with sides of 4 cm are
$V = -w^2 h$			2. Two metal cubes with sides of 4 cm are
V = nr - n			meited and casted into a spherical ball. Find
-Pyramid			the radius of sphere so formed.
$V = \frac{1}{2}Bh$			
-Cone			3. A cone has a volume of 317π cm ³ and a
			height of 5 cm. Find the diameter of the base.
$V = -\frac{\pi}{3}\pi r^2 n$			
-Sphere			4. You have been asked by your school to
$V = \frac{4}{\pi}\pi r^3$			design a brick planter that will be used by
$V = \frac{3}{3}$			design a blick planter that will be used by
			classes to plant nowers. The planter will be
			built in the shape of a right rectangular prism
			with no bottom so water and roots can access
			the ground beneath. The exterior dimensions
			are to be 12 ft . \times 9 ft . \times 2 ^{$\frac{1}{2}$ ft. The bricks}
			2 used to construct the planter are 6 in long
			$3\frac{1}{2}$ in wide and 2 in high What is the
			$\frac{1}{2}$
			volume of the bricks that form the planter?
Cross costions			
		A cube with a cylinder cut from its	
Cross sections are the 2	A square pyramid is cut along the shaded plane shown below.	center is cut along the plane shown	1. If a square pyramid was cut parallel to its
dimension figure	\sim	Jelow.	base, what shape would the cross section be?
formed when cutting a			
3 dimensional figure			2. Which shape would have a circular cross
with a plane.	Which of the following is the		section?
	cross-section of this solid?		
		cross-section of this solid?	
	B		Cube 2 Pyramid
	© /		
		© U	
			Odindor Suboro
			Cone Cone
Rotations	1	*	1
Rotations are the 3	What figure is forme	ed when rotating the	What figure is formed when rotating the
dimensional figure	triangle about line m	?	rectangle about the line as shown?
formed when rotating		Cone with a height	
a 2 dimension figure	r.	of 8 units and	3
about an axis	Ν	radius of A units	
		radius of 4 dilits.	
	\setminus		
	V 4 m 1		MathBits.com
			Ť

Density					
Density:	A block of wood 3 cm on each side has a mass of 27g . What is the density of the	1. A wooden block has a mass of 562 g and a volume of 72 cm ³ . What is the density?			
Density = <u>quantity</u>	block?				
Volume	v = I x w x h	2. A soda has a volume of 560 mL and a			
	v = 3 cm x 3 cm x 3cm v = 27 cm ³	density of 3.2 g/mL. What is the mass?			
	D = m/v D = 27 g / 27 cm ³ Density = 1 g/cm ³				