Centers of Triangles		
Review	Example	Practice
- Centroid: Intersection of Medians - Orthocenter: Intersection of Altitudes - Incenter: Intersection of Angle bisectors - Circumcenter: Intersection of perpendicular bisectors	This is the centroid because the segments are medians. C is the centroi If $A C=12$, find $A C$ is twice the length of $C F$, so $C F=12 / 2=$ 6 Therefore, the length of $A F$ is $12+6=18$.	Identify the segments and the point of concurrency. 1. Segment: \qquad Point: \qquad 2. Segment: \qquad Point: \qquad 3. L is the centroid of the triangle Find the lengths: $\begin{array}{ll} \mathrm{PO}= & \mathrm{LQ}= \\ \mathrm{MP}=\square & \mathrm{NQ}= \end{array}$
Parallelograms		
Parallelograms: - Opposite sides are parallel and congruent. - Opposite angles are congruent. - Consecutive angels are supplementary. - Diagonals bisect each other.	The following shapes are parallelograms. Solve for the variables. $\begin{array}{\|ll} \hline 2 x=70 & 3 x+5=x+3 y \\ x=35 & 3(35)+5=(35)+3 y \\ & 110=35+3 y \\ & 75=3 y \\ & 25=y \end{array}$ $3 x=12$ $x=4$ $\begin{aligned} & x+y=5 y \\ & (4)+y=5 y \\ & 4=4 y \\ & 1=y \end{aligned}$	1. The following shapes are parallelograms. Solve for the variables. 2. $K M=23.4$ Find $Y M$

Volume		
Know your area and volume formulas -Prism $V=B h$ -Cylinder $V=\pi r^{2} h$ -Pyramid $V=\frac{1}{3} B h$ -Cone $V=\frac{1}{3} \pi r^{2} h$ -Sphere $V=\frac{4}{3} \pi r^{3}$	Class notes	1. Two spheres M and N have volumes of 250 cubic cm and 750 cubic cm respectively. Find the ratio of their radii. 2. Two metal cubes with sides of 4 cm are melted and casted into a spherical ball. Find the radius of sphere so formed. 3. A cone has a volume of $317 \pi \mathrm{~cm}^{3}$ and a height of 5 cm . Find the diameter of the base. 4. You have been asked by your school to design a brick planter that will be used by classes to plant flowers. The planter will be built in the shape of a right rectangular prism with no bottom so water and roots can access the ground beneath. The exterior dimensions are to be $\mathbf{1 2 ~ f t . ~} \times \mathbf{9} \mathbf{f t} \times \mathbf{2} \frac{1}{2} \mathrm{ft}$. The bricks used to construct the planter are 6 in . long, $3 \frac{1}{2} \mathrm{in}$. wide, and 2 in . high. What is the volume of the bricks that form the planter?
Cross sections		
Cross sections are the 2 dimension figure formed when cutting a 3 dimensional figure with a plane.		1. If a square pyramid was cut parallel to its base, what shape would the cross section be? 2. Which shape would have a circular cross section? Rectangular solid Cube
Rotations		
Rotations are the 3 dimensional figure formed when rotating a 2 dimension figure about an axis.	What figure is formed when rotating the triangle about line m ? Cone with a height of 8 units and radius of 4 units.	What figure is formed when rotating the rectangle about the line as shown?

Density		
Density: $\text { Density = quantity } \underset{\text { Volume }}{\text { Vol }}$	A block of wood 3 cm on each side has a mass of 27 g . What is the density of the block? $\begin{aligned} & v=1 \times w \times h \\ & v=3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm} \\ & v=27 \mathrm{~cm}^{3} \end{aligned}$ $\begin{aligned} & \mathrm{D}=\mathrm{m} / \mathrm{v} \\ & \mathrm{D}=27 \mathrm{~g} / 27 \mathrm{~cm}^{3} \end{aligned}$ Density $=1 \mathrm{~g} / \mathrm{cm}^{3}$	1. A wooden block has a mass of 562 g and a volume of $72 \mathrm{~cm}^{3}$. What is the density? 2. A soda has a volume of 560 mL and a density of $3.2 \mathrm{~g} / \mathrm{mL}$. What is the mass?

